ABSTRACT
Standardization of the medicinal plants by High Performance Thin Layer Chromatography is one of the recommended methods for quality control of herbs. In this paper Cissampelos pareira a medicinal plant which has wide spread application in various systems of medicine is subjected to HPTLC fingerprint analysis by various mobile phases. The methanolic extract of Cissampelos pareira in the mobile phase of composition Toluene, ethyl acetate and formic acid (8:2:0.1) gives a good fingerprint pattern. This analytical procedure can be adapted for all the plants before and after the formulation. Also such an analysis can be utilized in identifying Cissampelos pareira and in differentiating it from other species which are similar to it or are used as adulterants/substitutes.

Keywords: Cissampelos pareira, standardization, HPTLC, Fingerprint analysis.

INTRODUCTION
The traditional knowledge about most of the medicinal plants was in oral form of knowledge and it is slowly getting vanished or eroded due to cultural adaptations. There is no unique or standard procedures for maintaining the quality of the drug in terms of the phyto-constituents present in it. In spite of this many medicinal plants and plant based products finds a place in various systems of medicine. Therefore it is essential that such useful medicinal plants should be documented and studied for systematic regulation. With this intention in this present paper Cissampelos pareira a medicinal plant is subjected to HPTLC fingerprint analysis. Cissampelos pareira is a species of flowering plant belonging to Menispermacese family. It is known as abuta and is also called laghu patha in Ayurvedic medicine. It is widely used in tribal medicine for the treatment of asthma, dysentery, diuretic, anti-inflammatory, anti-arthritic, anti-fertility etc (Amresh, 2007a,b; Mausumi et al., 2007) It is reported to have alkaloids, flavanoids and pectins as chief phytoconstituents (Hiroshi Morita et al., 1993a,b,1995; Morris Kupchan, et al., 2006)

MATERIALS AND METHODS
35g of the air dried powder was subjected to hot continuous extraction using Soxhlet apparatus for 5 days (Sekar et al., 1999). The resulting solution was concentrated under vacuum and re-dissolved in methanol for further HPTLC analysis. The sample solutions were applied band wise by means of Linomat V applicator (CAMAG, Muttenz, Switzerland) on a commercial 10 cm × 10 cm pre-coated HPTLC Silica gel 60-plate (Merck). The application conditions were: carrier gas, nitrogen; syringe delivery speed, 10 s/μL; application volume, 10 μL; bandwidth, 8 mm; space between two bands, 5 mm; distance from bottom, 10 mm. Fifteen milliliters of mobile phase consisting of Toluene, ethyl acetate and formic acid in the ratio of 8:2:0.1 v/v/v was added into a twin-trough chamber, to saturate it for 15 min. The plate in the chamber was developed upward over a path of 8 cm The fluorescent image was examined under UV 365 nm by using a UV viewer cabinet (CAMAG). They were captured with a Digistore 2 documentation system (CAMAG). The excitation wavelength was 366 nm in reflection mode and the exposure time was 3 s. (Run-tao et al., 2009, Peishan et al., 2006)
RESULTS AND DISCUSSION
The HPTLC fingerprint profile of the methanolic extract showed the presence of 10 major peaks at the Rf values of 0.2, 0.28, 0.31, 0.39, 0.45, 0.50, 0.64, 0.70, 0.76, 0.96. (Fig. No. 1). Any herbal formulations which involve any number of medicinal plants must be subjected to such analysis and checked with the standard fingerprint which is kept as our in-house specification. Addition or deletion of any peaks indicates the adulteration of the drug material.

CONCLUSION
Since there are number of species which closely resemble each other, it will be a difficult task for the identification of the exact species which is of medicinal value. Hence this study will be helpful for the proper selection of plants in a scientific way.

Fig. 1: Chromatogram of methanolic extract

Fig. 2: Finger print analysis of methanolic extract of Cissampelos pareira

REFERENCES