INTERNATIONAL JOURNAL OF ADVANCES IN PHARMACY, BIOLOGY AND CHEMISTRY

Research Article

Lipid profile of schoolchildren with Giardiasis in Bashiar Hospital (Khartoum- Sudan)

Eltayeb Tayrab¹, Manal Mustafa², Abobaker Ibrahim³,

AbdElkarim A. Abdrabo⁴.

¹Department of chemical pathology, Faculty of Medical Laboratory Sciences,

National Ribat University, Khartoum-Sudan.

²Department of clinical chemistry, Faculty of Medical Laboratory Sciences,

Alneelain University, Khartoum-Sudan.

³Department of parasitology, Faculty of Medical Laboratory Sciences, National Ribat University,

Khartoum-Sudan.

⁴Department of clinical chemistry, Faculty of Medical Laboratory Sciences, Alneelain University,

Khartoum-Sudan.

ABSTRACT:

Giardia Lamblia is a flagellated protozoan parasite, which is the most common intestinal pathogen in schoolchildren in underdeveloped countries. It has been suggested that most lipids and fatty acids are taken up by Giardia for energy production. The objective of this study is to assess the association of lipids and lipoproteins concentration in Sudanese schoolchildren with giardiasis, at Bashiar Teaching Hospital, in Khartoum- Sudan. The study was done between January to June 2014; included 106 subjects, of them 71 were schoolchildren from schools near by the hospital, while 35 were age and sex matched controls. Macroscopic and microscopic diagnosis of the giardia was done by finding the trophozoites or cyst in stools of the subjects. After overnight fasting; serum lipid profile was done using automated chemical analyzer. The mean age of the children with giardiasis was (10.6 \pm 4.1years), versus (13.0 \pm 5.6years) in control subjects. The mean serum cholesterol level in the children with giardiasis was (158.6 \pm 34.4mg/dl), versus (165.7 \pm 38.9mg/dl) in healthy control children; triglycerides (117.2 \pm 27.3/dl), versus (97.9 \pm 28.2mg/dl); HDL (44.5 \pm 11.5mg/dl), versus (48.9 \pm 17.8mg/dl) and LDL (90.4 \pm 32.2mg/dl), versus (55.4 \pm 17.7mg/dl) respectively.

In schoolchildren with giardiasis; serum cholesterol and HDL significantly decrease, while triglycerides and LDL significantly increase. *Giardialamblia* have ability to keep low serum cholesterol, and high LDL by possessing low density lipoprotein receptor (LDLR), that implicates the binding and internalization of lipoproteins.

Key words: Giardia lamblia, serum, lipid profile, Bashair Hospital, Khartoum, Suadan.

INTRODUCTION

Giardia was first seen by Leeuwenhoek in (1681) while examining his own stool. Lambl (1859) and Alexei (1914) are also associated with its discovery.

Giardia is one of mucosal parasites in human; it has a unique metabolic pathway that allows it to survive and multiply by scavenging nutrients from the host^{1,2}.

Giardiasis is associated with contaminated water serves as one of the main sources of infection^{3,4}. Giardia exists in two morphologic forms trophozoites and cysts. Giardia lambliaexcystation is accomplished in two steps first by limiting the acidic conditions present in the stomach and secondly by the protease-rich and slightly alkaline small intestine⁵. Membrane biogenesis in Giardia requires cholesterol, because Giardia is unable to synthesize cholesterol de novo⁶, so it obtains its requirements from the upper small intestine, which is rich in biliary and dietary cholesterol⁷. In humans, *Giardia* infection can be symptomatic or asymptomatic. Symptomatic giardiasis can present with fatty diarrhoea, abdominal discomfort, vomiting, malabsorption and/or weight loss⁸. Giardiasis causes malabsorptive diarrhea⁹. In some cases, giardiasis resolves rapidly, but in other cases, it can result in chronic infection¹⁰. Therefore the infected people especially children, may lack the important caloric source and lipid soluble vitamins (K, A, D, E). Lower level of hemoglobin concentration, and iron-deficiency anemia associated with giardiasis were observed¹¹. It has been suggested that most lipids and fatty acids are taken up by endocytic and non-endocytic pathways and are used by *Giardia* for energy production and membrane/organelle biosynthesis¹². *Giardia* induces a loss of epithelial barrier function and functional injuries of the enterocyte by mechanisms that remain unknown¹³.

METHODS MATERIALS

The objective of the present study is to assess the association of lipids and lipoproteins concentration in Sudanese schoolchildren with giardiasis, at Bashiar Teaching Hospital, which is a tertiary care hospital. in Khartoum- Sudan. The study was done between January to June 2014 included 106 subjects, of them 71 were schoolchildren from school near by the hospital, while 35 were age and sex matched controls. Bashiar Hospital is located in the south peripheries of Khartoum city with poor sanitary system. Ethical clearance was taken from the authorities, while written consent was taken from all subjects. Macroscopic and microscopic diagnosis of the giardia was done by finding the trophozoites or cysts in stool of the subjects attending the hospital. Patients with giardiasis and their controls were given oral instructions to fast overnight for 12-14 hours before collecting the venous blood samples. Serum was separated after centrifugation at 3000 RPM for 10 minutes, and then stored at -20C, till the time of biochemical analysis using automated chemical analyzer (TOSOH AIA -360). Total cholesterol, triglycerides, low density lipoprotein (LDL) and high density lipoprotein (HDL) were measured parallel with control samples from Biosystem Company (Spain).

RESULTS

Data were analyzed using IBM SPSS Statistic version 20. A comparison of the means was performed using the Independent-Samples Student's *t*-test from the SPSS Statistic program, (P=0.05) was considered significant.

The study revealed that; out of the 71 patients; of 37 were males and 34 females. In the 35 control subjects; 20 of them were males, and 15 females (tabe.1). The majority of study population (83.1%vs 60%) aged between 5 to 15 years (table 2 &3). The study showed that the mean age of the children with giardiasis was (10.6 \pm 4.1 years), while the mean age of control subjects was (13.0±5.6years). The mean serum cholesterol levels were (158.6±34.4mg/dl) in the children with giardiasis versus (165.7±38.9mg/dl) in the young subjects without giardiasis with P value 0.00. The mean serum triglycerides level was (117.2±27.3/dl) in the children with giardiasis, versus $(97.9\pm28.2$ mg/dl) in the control subjects, with p value 0.00.The mean serum HDL was (44.5±11.5mg/dl) in children with giardiasis versus (48.9±17.8mg/dl) in their controls, with P value 0.00. The mean serum LDL was (90.4±32.2mg/dl) in the schoolchildren with giardiasis versus (55.4±17.7mg/dl) in the healthy control children, with P value 0.00 (Table 1 &4).

DISCUSSION

In the present study lipid profile was used to assess, if there is any association between offensive loose stool with undigested fats, and serum cholesterol. HDL, LDL & triglycerides, in the in Sudanese schoolchildren attending Bashair Teaching Hospital. in Khartoum, consulting diagnosis and medication from giardiasis. This study reveals a significantly low total serum cholesterol in the schoolchildren infected with giardiasis, these finding are in agreement with that reported by Bansal et al¹, Ma'ani N. Al-Shamari and Dhuha M¹¹ because giardia lamblia is unable to synthesize cholesterol required for its membrane biosynthesis by itself⁶, hence it depends on its requirements from the host. Loss of lipids is one of giardiasis complications resulting in offensive stool associated with undigested lipids. This study also shows a low good cholesterol (HDL) levels in the giardiasis, which is consistent with that concluded by ⁽¹⁾ while in disagreement with the finding of Ma'ani N. Al-Shamari and Dhuha M¹¹ in Iraq. LDL levels are significantly increased in this study, which is in consistent with finding of Faucher

et al¹⁴.Even cholesterol is carried by LDL, normal LDL in giardiasis; as recorded by Bansal et al¹, Ma'ani N. Al-Shamari and Dhuha M11 or even elevated as in this study in giardia infections; it's unexplainable. This may be due to compelling of Lujain¹⁵; who found that cholesterol starvation is necessary and sufficient for Giardiatrophozoites to differentiate into environmentally resistant cysts; or what reported by Maria et al⁶; who said that: giardia trophozoites contain low density lipoprotein receptor (LDLR), that implicated in the binding and internalization of lipoproteins giving the giardia the capacity to acquire essential components from different environments. Triglycerides in turn show significant increase in this study, this finding is in disagreement with that concluded by Maani and group in 2013¹¹, who found normal levels of triglycerides in giardiasis patients, this may due to young subjects we selected for this study, while they did their study on adults.

www.ijapbc.com

In general; giardiasis disturbs lipids parameters in schoolchildren¹, including intestinal malabsorption of lipids resulting in offensive loose feces. Lowering

serum cholesterol, because it's used for the parasite membrane biosynthesis. Decreases good lipoproteins (LDL) levels, associates with significantly increase in triglycerides and (LDL) levels. That may be associated with risk of coronary heart diseases¹⁶.

CONCLUSION

Giardia lamblia have ability to keep low serum cholesterol, and high LDL by possessing low density lipoprotein receptor (LDLR), that implicates the binding and internalization of lipoproteins giving the giardia the capacity to acquire essential components from different environments.

ACKNOWLEDGEMENTS

The authors would like to thank the staff of Bashiar Teaching Hospital, in Khartoum –Sudan for their great support, and the patients and volunteers for giving the samples.

 Table 1

 Descriptive table of the gender of the children with giardiasis and their control

Subjects	Males	Females	Total
Patients	37(52.1%)	34(47.9%)	71
Control	20 (57.1%)	15(42.9%)	35
Total	57	49	106

 Tabe 2

 Descriptive table of the age groups in the schoolchildren with giardiasis

Age groups	Males	Females	Percentage
Less than5	3(4.2%)	1	5.6%
5-10	20(55.2%)	18	53.5%
11-15	8(29.5%)	13	29.6%
16-18	6	2	11.3%
Total	37	34	100%

 Table 3

 Descriptive table of age groups in the children without giardiasis (control)

Age groups	Males	Females	Percentage
Less than5	0	0	0%
5-10	6	8	40%
11-15	5	2	20%
16-18	9	5	40%
Total	20	15	100%

 Table 4

 Comparative study of lipid profile of schoolchildren with giardiasis and their control group

Items	Patients (No=71) (mean±std)	Control (No=35) (mean±std)	P value
Age (years)	10.6±4.1	13.0±5.6	
Cholesterol (mg/dl)	158.6±34.4	165.7±38.9	0.000
Triglyceride (mg/dl)	117.2±27.3	97.9±28.2	0.000
HDL (mg/dl)	44.5±11.5	48.9±17.8	0.000
LDL (mg/dl)	90.4±32.2	55.4±17.7	0.000

REFERENCES

- 1. Bansal D, Harinderpal SB, Rakesh S. Role of cholesterol in parasitic infections. Journal of diabetes and metabolic disorders. 2005; 4:10.
- 2. Cox FE. History of human parasitology. Clin Microbiol Rev. 2003; 16 (1): 174.
- 3. Smith A, Reacher M, Smerdon W, Adak GK, Nichols G, Chalmers RM. Outbreaks of waterborne infectious intestinal disease in England and Wales. Epidemiology and Infection. 2006; 134:1141–1149.
- 4. Monis PT, Thompson RC. Cryptosporidium and *Giardia*-zoonoses: fact or fiction? Infection, genetics and evolution. Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases. 2003; 3:233–244.
- 5. Gillin FD, Reiner DS, McCaffery M: Cell biology of the primitive eukaryote *Giardia lamblia*. Annu Rev Microbiol 1996, 50:679-705
- Maria RR, Silvana L M, Rodrigo Q, Andrea SR, Maria C T. *Giardia lamblia* low-density lipoprotein receptor-related protein is involved in selective lipoprotein endocytosis and parasite replication. Molecular Microbiology, 2011; (79) 5; 1204–1219.
- Field FJ, Kam NTP, Mathur SN: Regulation of cholesterol metabolism in the intestine. Gastroenterology 1990; 99:539-551.
- Kamda JD, Singer SM. Phosphoinositide 3kinase-dependent inhibition of dendritic cell interleukin-12 production by *Giardia lamblia*. Infection and Immunity. 2009; 77:685– 693.
- 9. Scott KG, Meddings JB, Kirk DR, Lees-Miller SP, Buret AG. Intestinal infection with Giardia spp. reduces epithelial barrier function in a

myosin light chain kinase-dependent fashion. Gastroenterology. 2002; 123(4):1179-90.

- 10. Faubert G. Immune response to *Giardia duodenalis*. Clinical Microbiology Reviews.2000; 13:35–54.
- 11. Ma'ani N. Al-Shamari and Dhuha M. Jabir.Study of lipid profile alteration in the patients infected with *Giardia lamblia* and compare the results with healthy individuals. QMJ, 2013; 9(15):119-129.
- Yichoy M, Duarte T, De Chatterjee A, Mendez T.L, Aguilera K.Y, Roy D, Roychowdhury S, Aley S.B, Das S. Lipid metabolism in *Giardia*: a post-genomic perspective, Parasitology, 2011; 138(3): 267–278.
- Humen MA, Pérez PF, Liévin-Le Moal V. Lipid raft-dependent adhesion of Giardia intestinalistrophozoites to a cultured human enterocyte-like Caco-2/TC7 cell monolayer leads to cytoskeleton-dependent functional injuries,Cell Microbiol. 2011; 13 (11):1683-702.
- Faucher JF, Milama EN, Missinou MA, Ngomo R, Kombila M, Kremsner PG: The impact of malaria on common lipid parameters. *Parasitol Res* 2002; 88:1040-43.
- Lujain HD, Michael R. Mowat R, Linda G. Byrd, Theodore E N. Cholesterol starvation induces differentiation of the intestinal parasite *Giardia lamblia*. Proc. Natl. Acad. Sci. USA (Cell Biology), 1996; 93: 7628-7633
- 16. Musa Hassan Hussein, Eltayeb Mohamed Ahmed Tayrab, Muzamil Mahdi Abdel Hamid, Elbagire Abdel RahmanElbashir, Lemya Mohamed Yahya, Nhad Mohammed Salih. Characterization of lipid profile in coronary heart disease patients in Sudan. Indian Heart Journal. doi.org/10.1016/j.hj.**2013**.3.007.