INTERNATIONAL JOURNAL OF ADVANCES IN PHARMACY, BIOLOGY AND CHEMISTRY

Research Article

Investigation of adduct formation constants of nickel(II)diphenylcarbazonate with nitrogen bases by

spectrophotometry

Shivaraj and T. Suresh*

Department of Chemistry, Vijayanagar Sri Krishnadevaraya University,

Ballari, Karnataka - 583105.

ABSTRACT

Job's continuous variation method was employed to study the adduct formation constants of selected nitrogen bases with nickel(II)diphenylcarbazonate at $25\pm0.1^{\circ}$ C in chloroform solution. In case of bidentate bases Job's plot displayed a maximum at a mole fraction $X_{Ni(DPC)2}$ = 0.5, which indicates the formation of 1:1 adducts with $X_{Ni(DPC)2}$. Where as in case of monodentate bases Job's plot displayed a maximum at a mole fraction $X_{Ni(DPC)2}$ = 0.66 indicating the formation of 1:2 adducts with $X_{Ni(DPC)2}$. Variation in their stabilities of these adducts with the bases are attributed to changes in their donor power. Stability of adducts are discussed in terms of steric hindrance, basicity and ring structure. Further it is found that the formation constant values of nickel(II)diphenyl carbazonate are higher than those of nickel(II)diphenylthiocarbazonate. This was attributed to the weak Ni-N bond in nickel(II)diphenylcarbazonate.

Keywords: Adduct, spectrophotometer, nickel(II)diphenylcarbazonate, nitrogen bases and steric factor.

INTRODUCTION

Nickel plays important role in the biology of some microorganisms and plants.¹⁻³ Diphenyl carbazone is a oxygen analogue of dithizone, it is widely used in detection of several heavy metals such as Hg, Cd, Mo, Cr, Cu^{4-6} . Ni(DPC)₂ is paramagnetic in nature, which is in contrast with the magnetic property of nickel(II)diphenylthiocarbazonate⁷. In continuation of our earlier work⁸ on the behavior of nitrogen bases with nickel metal chelate, we have further investigated the interaction of some nitrogen bases like 2,2'-bipyridyl, 1,10-phenonthroline, ethylenediamine, aniline, substituted anilines. pyridine, substituted pyridines and other monodentate nitrogen bases with nickel(II)diphenylcarbazonate in chloroform room temperature at spectrophotometrically by using Job's continuous variation method. Much work has done on the evaluation of factors such as ligand basicity, solvent, steric effects and metal chelate acidity in the study of adducts formation from metal chelates⁹⁻¹⁶. In this report we gave some results of study of relative

importance of steric hindrance of substituted aniline, substituted pyridines and other monodentate and bidentate nitrogen bases with Ni(DPC)₂.

MATERIALS AND METHODS

Apparatus: Bausch and Lomb Spectronic 2000 spectrophotomer was used to determine the composition of the complex at $25\pm0.1^{\circ}$ C.

Reagents: Commercial sample of diphenylcarbazone (Robert Johnson) was purified by the method reported elsewhere¹⁷ and purity was checked against the reported melting point viz., 127°C. Aniline, 2-Me aniline, 3-Me aniline (B.D.H), 2,3-Dimethyl aniline, 2,4-Dimethyl aniline, 2,6-Dimethyl aniline (Merck), pyridine (Fisher), 2,4-lutidine (dimethyl analogue of pyridine), morpholine, piperidine (Merck), quinoline 2-picoline, 3-picoline, 4-picoline, 2,6-(B.D.H), lutidine (dimethyl analogue of pyridine), 2,4,6collidine (trimethyl analogue of pyridine). ethylenediamine(B.D.H) were dried over potassium hydroxide and distilled. The constant boiling fraction was collected and used. 4-Methyl aniline, 2,5dimethyl aniline, 3,4-dimethyl aniline, 2,2'-bipyridyl, 1,10-phenanthroline (B.D.H) and nickel chloride hexahydrate (Merck) were used without purification.

Preparation of Metal Chelate:

The nickel(II)diphenylcarbazonate was prepared by dissolving 1g of nickel chloride hexahydrate in 50ml of acetate buffer of pH 6, resulting solution was heated to 60° C and this hot solution was mixed with alcoholic solution of diphenycarbazone. The total amount of reagent added was slightly more than that of required for 1:2 stoichiometry. The precipitate obtained was digested on low heat for two hour and filtered under suction, washed several times with water and finally twice with alcohol to remove unreacted metal and ligand residues. The complex obtained was dried in vacuum over phosphorus pentoxide at room temparatur. The complex was analyzed for the metal content. The nickel content of the complex was found to be 10.89% by phenonthroline-dithizone method¹⁸ and it was found to be in good agreement with calculated value (10.94%).

Determination of Adduct Formation Constants:

Adduct formation constants. $K_{\rm f}$ of nickel(II)diphenylcarbazonate $[Ni(DPC)_2]$ with nitrogen bases have been determined by Job's method of continuous variation to find the composition of complex formed, 0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10ml of 5.9X10⁻⁵M Ni(DPC)₂ was pipetted in to 25ml volumetric flask were mixed with 10, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0 ml 5.9X10⁻⁵M nitrogen base was added keeping both the number of moles of Ni(DPC)2 and bidentate nitrogen base, constant but varying either mole fractions of $Ni(DPC)_2$ or ligand (where as in case of most of the monodentate bases 5.9X10⁻²M Ni(DPC)₂ and 5.9X10⁻ ²M nitrogen bases are used). max was determined using one of the composition at 400-700nm. The absorbance value at 480nm and 530nm are found to be suitable for study of formation of the Ni(DPC)₂ adducts, because the difference in the absorbance between Ni(DPC)₂ and adduct being the largest at these wavelength (Fig 1). The absorption for all the compositions was recorded at a constant wavelength ($_{max}$, 530nm)¹⁹. The data of absorption and percentage composition of Ni(DPC)₂ and ligand solution at the constant temperature ($25\pm0.1^{\circ}$ C) can be used and curves were constructed. A typical plot is shown in Fig 2.

Calculations:

The ratio of metal chelate to base was determined by constructing graph of absorbance versus mole fraction of metal chelate (Fig 2). In this work formation constants value of the adducts (K_f) were calculated by using the following equation,²⁰

$$K_{f} = \frac{\left[\frac{A_{2}}{A_{1}}\right]}{\left[1 - \frac{A_{2}}{A_{1}}\right] x \left[c_{L} - c_{M} x^{A_{2}} - A_{1}\right]}$$

Where, K_f : adduct formation constant

A₁ : absorbance at break point

A2: actual absorbance

 C_M : concentration of [Ni(DPC)₂]

C_L : concentration of base (ligand)

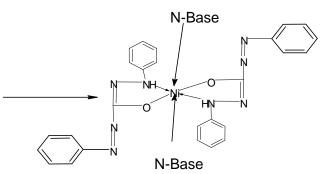
RESULTS AND DISCUSSION

The reaction of heterocyclic bases with chelate nickel(II)diphenylcarbazonate in non –aqueous solutions produces 1:2 adducts⁷, their stoichiometry being shown by a well defined isosbestic point and equilibrium constants of the form:

$$K = \frac{[adduct]}{[diphenyl carbzonate]X[base]}$$

Which are highly consistent over a wide range of composition. The identity of the absorption spectra of the simple chelates in solution in pure pyridine with the extrapolated spectra of 1:2 adducts shows that two molecules of pyridine are added to the complexes under these experimental conditions.

The main purpose of our research work was to evaluate quantitatively any steric effects in the formation of adducts between Ni(DPC)₂ and nitrogen bases in a solvent such as chloroform. Ni(DPC)₂ described in previous publications^{21,22} is paramagnetic and has been attributed tetrahedral structure with sp³ hybridization. It gives red coloured solution in solvents like CHCl₃ and CCl₄ etc, while the solutions in pyridine, substituted pyridine, aniline and substituted anilines are pink in colour. This may probably due to the formation of the Ni(DPC)₂ and nitrogen base adducts of the following type:


- 2N-Base

The spectrum for Ni(DPC)₂ exhibit a max at 480nm and 560nm. The spectrum of Ni(DPC)₂ undergoes profound change upon the addition of nitrogen bases, collapsing to a single absorption band in the visible range between 530-540 nm. The change in the spectra of Ni(DPC)₂ on the addition of nitrogen bases could be used to determine the equilibrium constant of the adducts⁷.

HN

The absorption spectra were measured in the visible region around 400-800nm using chloroform as a reference at a concentration of 10^{-5} M for bidentate bases and 10^{-2} M for monodentate bases. A typical spectra for absorbance measurements gave wavelength of maximum absorbance for Ni(DPC)₂ complex with nitrogen bases which was found to be between 530-540nm as it is evident by graph plotted between different wavelength and absorbance (Fig 1).

Nickel(II)diphenylcarbazonate adduct with N-bases

The adduct formation constants of the Ni(DPC)₂ with nitrogen bases at $25\pm0.1^{\circ}$ C are listed in Table 1. Column III gives the values of pKa of N-bases that were selected for this investigation, Column IV gives the values of formation constants in CHCl₃.

The stabilities of Ni(II) adducts were found to increase in the following order of bases:

2-Me aniline < 2,3-dimethyl aniline, 2,6-dimethyl aniline < 2,4-dimethyl aniline < DMSO < 2,5-dimethyl aniline < aniline < 3-Me aniline, 4-Me aniline < 3,4-dimethyl aniline < 2,6-lutidine < 2-picoline < 2,4,6-collidine < 2,4-lutidine < morpholine < quinoline < piperidine < 3-picoline < 4-picoline < pyridine < 2,2'-bipyridyl < ethylenediamine < 1,10-phenanthroline.

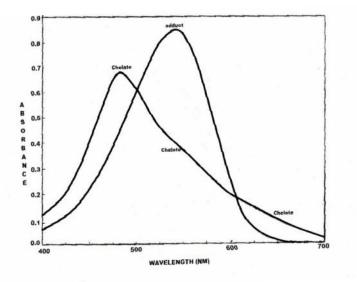
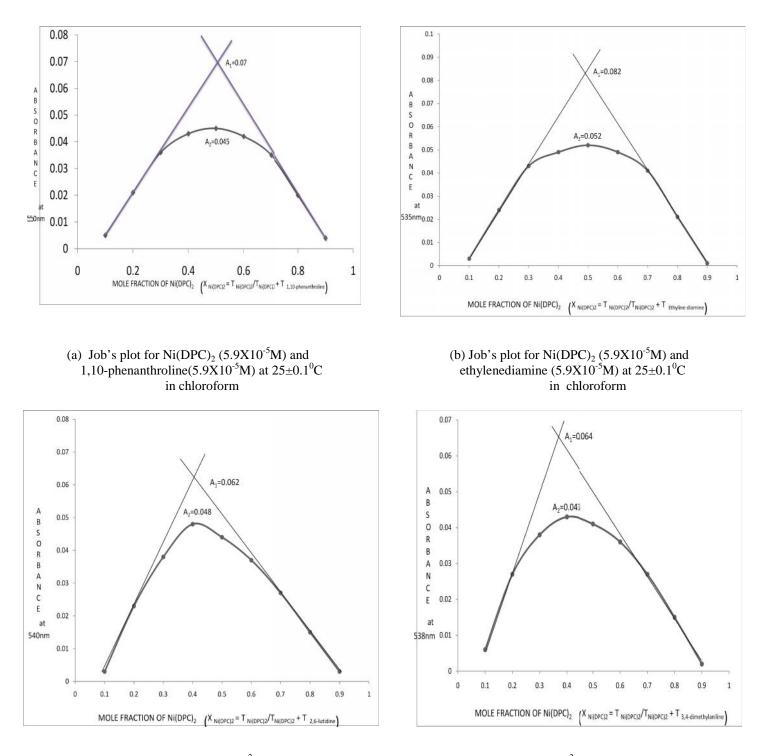



Figure 1 Plot of absorption spectra of Ni(DPC)₂ and 2,4-lutidine at 25±0.1⁰C in chloroform

(c) Job's plot for Ni(dz)₂ ($5.9X10^{-2}M$) and 2,6-lutidine ($5.9X10^{-2}M$) at $25\pm0.1^{\circ}C$ in chloroform

(d) Job's plot for Ni(DPC)₂ ($5.9X10^{-2}M$) and 3,4- dimethyl aniline ($5.9X10^{-2}M$) at $25\pm0.1^{0}C$ in chloroform

 $Figure \ 2 \\ Job's \ curves \ of \ equimolar \ solutions \ of \ Ni(DPC)_2 - nitrogen \ bases \ at \ 25 \pm 0.1^0 C \ in \ chloroform$

Adduct formation constants of nickel(II)diphenylcarbazonates				
Sl.No.	Name of the Base	pka	$\log K_{\rm f}$	
1	Aniline	4.63 27	1.93	
2	2Me-aniline	4.44	1.49	
3	3Me-aniline	4.73 27	1.96	
4	4Me-aniline	5.08 27	1.96	
5	2,3-Dimethyl aniline	4.64 27	1.54	
6	2,4-Dimethyl aniline	5.00 27	1.64	
7	2,5-Dimethyl aniline	4.60 28	1.83	
8	2,6-Dimethyl aniline	4.10	1.54	
9	3,4-Dimethyl aniline	5.22 29	2.00	
10	2-Niroaniline	0.29	** NA	
11	3-Niroaniline	2.47	** NA **	
12	4-Niroaniline	1.02	NA	
13	Piperidine	27 11.12	4.02	
14	Morpholine	8.33	3.69	
15	Quinoline	4.90 27	3.96	
16	DMSO	-	1.76	
17	Pyridine	5.20	4.41	
18	2-Picoline	5.90 ¹⁰	2.96	
19	3-Picoline	5.68	4.3	
20	4-Picoline	6.08	4.37	
21	2,6-Lutidine	4.95	2.30	
22	2,4-Lutidine	6.72 ¹⁰	3.23	
23	2,4,6-Collidine	7.48 27	3.13	
24	2,2'-Bipyridyl	4.40 31	5.11	
25	1,10-Phenonthroline	4.95 31	5.23	
26	Ethyline diammine	31 6.84	5.20	

Table 1	
dduct formation constants of nickel(II)dipheny	lcarbazonat

** NA - No adduct formation

For the adducts of $Ni(DPC)_2$ with aniline derivatives, viz., 3-methyl aniline, 4-methyl aniline, the K_f values increases regularly with Pka. Were as in case of 2-methyl aniline, 2,3-dimethyl aniline, 2,4-dimethyl aniline, 2,5-dimethyl aniline and 2,6-dimethyl aniline there is a decrease in the stabilities of adducts

compared to aniline, this may be attributed to the steric hindrance offered by methyl group present in the 2-position, and hence these bases did not forms stable adducts.

The low values of $log K_{\rm f}$ observed for $Ni(DPC)_2$ - aniline adducts may be attributed to the weak basic

character.²⁴ Thus it may be anticipated that the stronger the basic character the stronger will be the bonding in Ni(DPC)₂-L adducts. Hence it may be concluded that Ni(DPC)₂ – pyridine adducts have stronger bonding than Ni(DPC)₂ – aniline adducts as it is evident from log K_f values in Table 1.

Finally it should be noted that no systematic trend in the stability orders of pyridine, 3-picoline and 4picoline are observed. On the other hand, the lower stabilities of 2-picoline, 2,4-lutidine, 2,6-lutidine and 2,4,6-collidine compared to pyridine may be attributed due to the steric hindrance caused by the methyl groups present at 2 and 6--position even though their pKa values are much more higher than pyridine.

The formation constant values for the morpholine and piperidine are not so high, this may be attributed to the decreased basicity of nitrogen atom in the ring. 4picoline has higher stability constant value than 2-, 3picolines, it is due to the higher pKa value and it does not possesses any sterically hindering group.

It is surprising to find that the absorption spectrum of $Ni(DPC)_2$ does not change upon addition of 2-nitro aniline, 3-nitro aniline and 4-nitro aniline. This may be due to the fact that these nitrogen bases are very weak bases and hence do not form adducts with the $Ni(DPC)_2$ under these experimental conditions.

Bidentate bases such as bipyridyl, 1,10phenanthroline and ethylenediamine forms stable complexes, in case of bidentate bases it appears that the adduct formation is not adversely influenced by the steric effects. This might be due to the rearrangement of chelate rings in order to provide a cis-position for bidentate adducting bases²⁵.

CONCLUSION

The reaction of various nitrogen bases with Ni(DPC)₂ under this investigation helps to improve our understanding about the structure of the nickel(II)diphenylcarbazonate. The behavior of these complexes is indicative of the tetrahedral configuration of nickel. In the investigation of stability constants of nickel(II)diphenylcarbazone with various nitrogen bases, were planned to study the effect of basicity of nitrogen bases and steric hindrance on the stability of nickel(II)adducts. It was found that the stabilities of the adducts of nickel(II)diphenylcarbazonate chelate increases with increase in basicity of the bases and decrease with increase in steric hindrance. Furthermore the adduct formation constants for Ni(DPC)₂ are significantly higher than its sulphur analogue $Ni(Dz)_2^{26}$, indicating that adducts of nickel chelates with O and N donar atoms prefer higher coordination number than four.

ACKNOWLEDGEMENT

One of the author (Shivaraj) wishes to express his sincere thanks to Government of Karnataka, for providing Devaraj Urs fellowship, which is helpful to carry out this research work.

REFERENCES

- 1. Astrid Sigel, Helmut Sigel, Roland Sigel KO. Nickel and its surprising impact in nature. Inorg Chim Acta, 2008; 361(9-10):2989.
- Michael Jones D, Andrew Sydor M, Deborah Zamble B. Nickel homeostasis: Mechanism and function of Nik R. Encyclopedia of Inorganic and Bioinorganic Chemistry, 2013(Published Online); University of Toronto, Canada.
- Anke M, Groppel B, Kronemann H, Grun M. Nickel-an essential element. IARC Sci. Publ, 1984; 53: 339-365.
- 4. McClellan BE, Freiser H. Kinetics and mechanism of extraction of zinc, nickel, cobalt, and cadmium with diphenylthio carbazone, dio-tolylthiocarbazone, and di- -naphthyl thiocarbazone. Anal Chem, 1964; 36(12): 2262-2265.
- Kemula W, Janowski A. Theory and structure of complex compounds. Paper presented at the Symposium held in Wroclaw, Poland., 1962 (pub. 1964); 321-325.
- 6. Balt S, Van Dalen E. The reactions of diphenylcarbazide and diphenylcarbazone with cations. Anal Chim Acta, 1963; 29: 466-471.
- Math KS, Suresh T. Reactions of nitrogen bases with nickel chelates of di-o-tolylcarbazone and di-o-tolylthiocarbazone. Talanta, 1985; 32(8): 811-815.
- 8. Shivaraj, Suresh T, HiremathSureshBabu. Spectrophotometric study of stability constants of adducts of nickel(II)-diphenylthiocarbazonate with nitrogen bases by Job's method of continous variation. Int J of Recent Scientific Research, 2016; 7(3): 9734-9737.
- 9. Suresh T. Extractive spectrophotometric determination of nickel with di(2-bromo, 4-methylphenyl) carbazone and pyridine. J Ind Coun Chem, 2002; 19(2): 47-49.
- Suresh T, Biradar V, Kulkarni VH. Spectrophotometric study of adducts of nickel(II)dithizonate with heterocyclic and other nitrogen bases. J Chemtracks, 1999; 1: 58.
- 11. Suresh T, Kulkarni VH. A rapid spectrophotometric method for determination of nickel of with di-o-tolylthiocarbazone using the synergistic effect of o-phenonthroline. J Indian Chem Soc., 1995; 72: 887-888.

- www.ijapbc.com
- 12. Suresh T. A highly sensitive extractionphotometric method for nickel with di(2methyl-5-nitrophenyl)thiocarbazone and bipyridyl. Acta Ciencia Indica, 1994; 20C(2): 58-59.
- 13. Suresh T, Math KS, Kulkarni VH. Adduct formation of nickel(II)chelates of 4-methyl and 2-methyl-8-quinolinols with heterocyclic nitrogen bases. Asian J Chem, 1993;5(2): 296-304.
- 14. RezaEmamaliSabzi et al. Synthesis and determination of stability constants of a new bis-1,2,4-triazole ligand for complexation with zinc(II), copper(II) and nickel(II) in acetonitrile. Am J Anal Chem, 2012;3(6):437-442.
- 15. Thanavelan R, Ramalingam G, Manikandan G, Thanikachalam V. Stability constants of mixed ligand complexes of lead(II) with 1-(aminomethyl) cyclohexane acetic acid and amino acids. J Saudi Chem Soc. 2014;18(3):227-233.
- 16. NaciyeTurkel. Stability constants of mixed ligand complexes of nickel(II) with adenine and some amino acids. Bioinorganic Chemistry and Applications, 2015; 1-9.
- 17. Krumholz P, Krumholz E. Zur kenntnis des diphenylcarbazones. Monatsh, 1937; 70(1): 431-436.
- 18. Math KS, Bhatki KS, Henry Freiser. A highly sensitive extraction - photometric method for nickel with dithizone and phenanthroline. Talanta, 1969; 16 (3): 412-414.
- 19. Meshram UP, Khobragade BG, Narwade ML, Yaul AR. Studies in formation constant of Al(III), Cr(III) and Fe(III) complexes with some substituted isoxazoline, pyrazole and pyrazoline pH metrically, spectrophotometrically and polarizibility constant refractometrically. J Chem Pharm Res, 2011; 3(3): 77-82.
- 20. Syed Ahmad Tirmizi et al. Spectrophotometric study of stability constants of cimetidinenickel(II)complex at different temperatures. Arab J Chemistry, 2012; 5(3): 309-314.
- 21. Balt S, Van Dalen E. The reactions of diphenylcarbazide and diphenylcarbazone with cations: Part II: Extraction behaviour and spectra of the reagents. Anal Chim Acta, 1962; 27: 188-193.
- 22. Math KS, Arkasali GS, Aminabhavi TM. Studies on stabilities of nickel(II) and zinc(II) complexes of substituted diphenylcarbazones and thiocarbazones. J Chem Eng Data, 1985;30(4): 447-449.

- 23. Albert A, Serjeant EP. The determination of ionization constants. Chapman and Hall Ltd., London, 1971; 93-115.
- 24. Dodamani AF. A study of adduct formation of heterocyclic nitrogen bases with nickel (II) chelate of di(3-chloro-2methylphenyl) carbazone. Research J of Pharm, Bio and Chem Sci, 2012; 3(2):178-189.
- 25. Math KS, Henry Freiser. Reactions of some low-spin nickel chelates with heterocyclic nitrogen bases. Anal Chem, 1969; 41(12): 1682-85.
- 26. Suresh T, Hipparagi SS, Kulkarni VH. Stability of the adducts of nickel(II)di-o-tolylcarbazonate with nitrogen bases. Nat Acad Sci Letters, 1994; 17:141-144.
- 27. Golumbic C, Goldbach G. Partition coefficients and ionization constants of methyl-substituted anilines. J Am Chem Soc, 1951; 73(8): 3966-67.
- 28. Suresh T, Dheerendra, Kulkarni VH. Adduct formation of nickel(II)chelates of diphenyl carbazone with nitrogen bases. Acta Cienica Indica, 1992; vol. XVIII C: 113-118.
- 29. Siddalingaiah AHM, Rajesh Bhat B. A study of adduct formation of heterocyclic nitrogen bases nickel(II)chelate of di(2-bromo,4with methylphenyl) carbazone. Asian J Chemistry, 1995;7(4): 761-766.